A revised structure for the rare earth fluoride gagarinite-(Ce) from experimental synthesis by fluid induced alteration of chevkinite-(Ce)

Marcin Stachowicz¹, Petras Jokubauskas¹, Bogusław Bagiński¹, Ray Macdonald¹, Daniel E. Harlov², Krzysztof Woźniak³

Żwirki i Wigury 93, 02-¹Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, 089 Warszawa, Poland ²Section 3-3, GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany

²Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-093, Warszawa Poland

marcin.stachowicz@uw.edu.pl

During a series of experiments on the fluid-induced alteration of the REE-Ti silicate chevkinite-(Ce), a completely unexpected result in one experiment was the formation of gagarinite-(Ce), ideally Na(Ca, Ce)₂ F_6 .

The chevkinite-group of minerals (CGM), with simplified composition ((Ca,REE)₄Fe²⁺ (Fe²⁺,Fe³⁺,Ti,Al)₂Ti₂(Si₂O₇)₂O₈) contain up to 50 wt% REE (expressed as oxides) but also carry significant amounts of high-field-strength elements (HFSE), such as Zr and Nb, and the actinides. It is a very widespread group; we know of hundreds of localities world-wide where they have been recorded.

Understanding the processes by which the rare earth elements (REE) are concentrated to economic levels in the Earth's crust has been a prime goal of ore deposit studies. In some cases, the enrichment has been due to extreme crystal fractionation of REE-rich magmas. However, there is an increasing body of field and experimental studies that have shown that the REE can be concentrated by hydrothermal processess [1]

• Natural chevkinite in a granitic system + reactive fluids ($Ca(OH)_2$, NaF, H₂O)

	Exp no.	P(IVI Pa)	T(°C)	(days)	ite	Quartz	Albite	NaF	H ₂ O
	CF-4	400	600	21	15.82	3.4	3.06	0.88	5.68
A CONTRACT OF	CF-13	200	550	64	15.58	5.21	5.51	2.4	5
	CF-22	200	600	42	21	5.59	5.6	4.3	5

• Charge loaded into 3 mm diameter, 1 cm long Au capsules arc-welded shut

• Au capsules loaded into cold-seal autoclaves on a hydrothermal line.

The high P-T experiments were carried out at the GeoForschungsZentrum Potsdam Hydrothermal laboratory using standard cold seal autoclaves in conjunction with a hydrothermal Fig. 1 high-pressure line. An internal thermocouple was placed such that its tip was located half-way up along a sealed Pt capsule (3 mm wide by 10 mm long) placed at the end of the autoclave. The Pt capsule contained chevkinite-(Ce) grains plus the accompanying minerals and fluids.

Scanning Electron Microscopy, BSE, EDS, EBSD

FIG. 2. False-colour scan of metasomatized chevkinite-(Ce) has been replaced, both along the grain edges and internally.

Chevkinite-(Ce) with abundant pore spaces rimmed by subhedral gagarinitefragments in CF13. Some 65% of the (Ce) and then by massive narsarsukite (Nar) with albite inclusions.(b) More complex textures involving same phases. Px is sodian pyroxene (c) Chevkinite-(Ce) rimmed by variable combinations of gagarinite-(Ce) fluorbritholite-(Ce) (Brt), narsarsukite, albite and voids. (d) Fractured chevkinite-(Ce) rimmed by fluorbritholite-(Ce) containing frankdicksonite (Fds; white spots) and discrete frankdicksonite grains.

그렇는 그는 그는 것 같아? 정말에 많은 것 같아. 김 씨는 것 같아. 말 많이 봐.	
50µm	
Fig 5. BSE image of	
gagarinite-(Ce) from CF22	cations:
experiment, single crystals	
placed on a carbon tape	

s:	2.92 0.27365	2.90
Dy	0.004 ± 0.02	0.000 ± 0.020
Gd	0.009 ± 0.01	0.013 ± 0.008
Sm	0.022 ± 0.02	0.042 ± 0.011

The final formula:

 $CF4 - (Na_{1.10}Ce_{0.69}Ca_{0.44}Nd_{0.31}La_{0.26}Pr_{0.12}Sm_{0.04}Sr_{0.03})_{3.0}F_{6.0}$ $CF13 - (Na_{1.15}Ce_{0.79}La_{0.38}Nd_{0.29}Ca_{0.24}Pr_{0.09}Sm_{0.02}Sr_{0.02})_{3.0}F_{6.08}$

6. J.M. Hughes, J.W. Drexler, The Canadian Mineralogist, 32 (1994) 563–565.

X-ray diffraction studies

Figure 6. Polyhedral representation of gagarinite-(Ce). View along [010], dotted circles with vac standing for a vacancy (A) and view along [001] (B).

Both space groups were tested

Temperature/K	295.7(8)		
Crystal system	hexagonal		Racemic twinning – pseudo-
Space group a/Å	P6 6.1465(2)	<i>P</i> 6₃/ <i>m</i> (incorrect) 6.1465(2)	center of symmetry, high R _{int} for
L /Å	C 4 4 (E / 2)	C 44CE/2)	

The mineral, previously named zajacite-(Ce), is known from only one natural occurrence, a hypersolvus granite from the Strange Lake Zr-Y-REE-Nb-Be deposit, Quebec-Labrador. The space group was identified as P3, with unit cell parameters a=6.099(1), c=11.064(2)(2) Å and formula $Na_{0.9}[(REE)_{1.2}Ca_{0.92}]_{2.04}F_6$ [2]. A subsequent single-crystal determination showed that it is isostructural with gagarinite-(Y) and its name was changed, with IMA-CNMNC approval, to gagarinite-(Ce), space group $P6_3/m$, with a=6.0861(12) and c=3.6810(8) Å [3]. The gagarinite-(Ce) in our experiments crystallized in $P\overline{6}$, with a = 6.1465(2), c = 3.75950(10), $R_1 = 1.37\%$. We observed 26% twinning by a twin center. The structure is derived from that of UCl_3 [3] with the addition of extra ^{*B*}Na⁺ into the crystal lattice, where REE³⁺ and Ca²⁺ fill both the cation sites (A) of the uranium salt [4,5].

The experiments have provided new information on cation distribution and substitution mechanisms in gagarinite-(Ce). The structure is derived from that of UCl₃ with the addition of extra ^BNa⁺ into the crystal lattice, where REE³⁺ and Ca²⁺ fill both the cation sites (A) of the uranium salt. Previous studies assumed full occupancy of the REE+Ca, compositionally disordered, site. To charge balance the substitution $2^{A}REE^{3+} \rightarrow {}^{A}Ca^{2+} + {}^{A}REE^{3+} + {}^{B}Na^{+}$, the amount of extra Na⁺ must equal Ca²⁺ in the final formula, giving Na_x(Ca_xREE_{2-x})F₆. ^BNa⁺ positions in the crystal lattice are separated by ca. 1.8 Å, which is shorter than the sum of ionic radii of neighbouring ions. In the extra ^BNa⁺ site every second position has to remain vacant, so the maximum allowed occupancy is 0.5 (Fig 6a). Gagarinite-(Ce) from CF4 shows surplus Na over Ca with a ratio close to 2:1, respectively. A vacancy in the REE site is necessary, equal to 1/3 of the redundant Na to remain in charge balance. If the Na content exceeds 1 in the formula unit, Na has to substitute for REE in the cation site. **The overall substitution mechanism is:** $(2x-y)REE^{3+} \rightarrow y^BNa^+ + (x-y)^ANa^+ + y^ACa^{2+} + (x-y)/3^A\Box$, where \Box stands for vacancy and x > y. New space group $P\overline{6}$ additional unique site for REE and Ca – preferential The crystal structure of gagrinite-(Ce) allocation of Ca in the A(2) site from hydrothermal alteration experiment Refined occupancy Site occupation **Bond Valence** Atom site Space group $P\overline{6}$ factor Sum 51.9 0.894(8) 2.98 Ce1 View along Z Asymmetric unit Ce2 0.620(6) 36 2.72 0.78 0.457(12)5.0 Na Fixed to 1 F1 q Ce1 F2 Fixed to 1 9 References 1. A.E. Williams-Jones, A.A. Migdisov, and I.M. Samsom, *Elements*, 8 (2012), 355-360. 2. J.L. Jambor, A.C. Roberts, D.R. Owens, J.D. Grice, The Canadian Mineralogist, 34 (1996) 1299-1304. 3. M.J. Sciberras, P. Leverett, P.A. Williams, D.E. Hibbs, A.C. Roberts, J.D. Grice, The Canadian Mineralogist, 49 (2011) 1111–1114. The 001 and 003 reflections, should be 4. W.H. Zachariasen, Acta Crystallographica, 1 (1948) 265–268. Ce2 F2 5. A.A. Voronkov, N.G. Shumyatskaya, Y.A. Pyatenko, Journal of Structural Chemistry, 3 (1962) 665–669.

systematically absent with 6_3 symmetry