Experimental synthesis of ThSiO₄ by fluid-induced alteration of chevkinite-(Ce)

Bogusław BAGIŃSKI, Ray MACDONALD, Marcin STACHOWICZ, Petras JOKUBAUSKAS, Jakub KOTOWSKI, Witold MATYSZCZAK and Daniel HARLOV

GFZ Helmholtz-Zentrur

ERSYTET W.

Experiments – hydrothermal lab

Experimental work has been carried out in the GeoForschungsZentrum Potsdam Hydrothermal laboratory Helmholtz-Zentrum

GFZ

Hydrothermal line – cold seal autoclaves: 300-750°C; 100-500 MPa.

Noble metal tubing; laboratory facilities for the loading and sealing of noble metal capsules. Max. thermal gradient along the length of capsule is approx. 5°C. Accuracy of temp. $\pm 3^{\circ}$ C

Why chevkinite group minerals (CGM) have been selected as the main subject of experiments?

Chevkinite-group minerals:

- □ Often contain considerable amounts of REE (>50 wt.%) and other trace elements (Zr, Y, Nb, Sr, Cr)
- Total of 56 elements have been recorded in CGM, in amounts ranging from parts per million to tens of weight percent. There is, therefore, considerable compositional diversity, resulting in many substitution schemes and structural varieties.
- □ Can be a strong concentrator of such elements as Ga, Ge, Sb
- □ The considerable amounts of Th help to calculate time of mineral crystallization (i.e. Vazquez et al., 2010)
- □ The frequency of occurrence of CGM is underappreciated because:
 - It is easy to confuse with other accessory phases
 - It is usually small (under 50 μm)
 - With our colleagues, we are showing that CGM are in fact widespread over an extensive range of igneous and metamorphic rocks and hydrothermal and ore deposits (over 20 papers published so far)

Some geochemical effects of CGM crystallization

CGM strongly fractionate REE

- The fractionation is very variable.
 - We have to determine how much of the variability is related to the nature of the coexisting accessory phases (e.g. in the U.K. Palaeogene granites CGM coexist with various combinations of REE rich epidotes, monazite, zircon, britholite and fergusonite), and by the composition of the fluids
 - In some rocks CGM are the dominant accessory and must therefore have the greatest effect on REE distribution
- **CGM** strongly fractionate Th from U.
 - The Th/U wt. ratio in CGM can exceed 100 (the typical mantle and crustal ratios are 3.5 to 4)
- **CGM** also fractionate Zr from Hf and Nb from Ta

Experimental details

24 different combinations

Main load Chevkinite-(Ce)

Other components added (in proportions to vary the alkalinity) Quartz, Albite, Apatite, Bytownite, An glass, Calcite, K feldspar, $Ca_3(PO_4)_2$

Hydrous fluid Ca(OH)₂ Na(OH) NaF CaF₂

Temperature 500-600°C

Pressure200 MPa

Time from 21 to 84 days

BSE picture of the sample after the experiment

Mineral phases shown in artificial colours on the basis of the EDX hyperscan results

Chevkinite-(Ce) + Ca(OH)₂ + Quartz + Albite + H₂O \rightarrow Britholite-(Ce) + Titanite + Pyroxene (Hedenbergite) + Wollastonite + Allanite-(Ce)

Alteration reactions

Our aim

To synthesize the products of alteration close to what we observe in the nature

nature (metasomatite, Keivy)

BSE- false colour picture of altered chevkinite in metasomatite from Keivy Massif. Chv-chevkinite-(Ce), Aln-allanite, Aes- aeshinite-(Y), Dav – davidite-(La)

experiment

BSE picture of altered chevkinite, experiment CF 24. Cvk-chevkinite-(Ce), EGM – epidote group mineral, Ttn – titanite, Bri – britholite-(Ce), Bt - biotite

Chevkinite-(Ce) used in the experiment

Pristine crystal coming from pegmatite from Diamer district, Pakistan

It shows homogenous composition of most elements, except Th whose contents vary from 1.0 to 2.9 wt. $\%~\rm{ThO}_2$

Specimen of chevkinite from from Diamer district, Pakistan

Details of experiments where ThSiO₄ was synthesized

chevkini	te, quartz, albite – always present in the l	oad			
experime	nt added components	conditions	fluid		
CF 6 –	bytownite, fluorapatite, FeS_2 , $CaCO_3$	$200MPa, 600^{\circ}C, 26 days$	$Ca(OH)_2$		
CF 14 -	-	200MPa, 550°C, 84 days	Ca(OH) ₂		
CF 15 -	$Ca_3(PO4)_2$	200MPa, 550°C, 84 days	NaF		
CF 18 -	Al_2O_3	200MPa, 600°C, 42 days	Ca(OH) ₂		
CF 23 -	An glass, K felds., FeO, Mg(OH) ₂	200MPa, 600°C, 32 days	$Ca(OH)_2 + CaF_2$		
CF 24 -	bytownite, K felds., FeO, MgOH) ₂	200MPa, 600°C, 32 days	$Ca(OH)_2 + CaF_2$		

ThSiO₄ case

As a result in several of 24 experiments ThSiO₄ as a separate phase has appeared

Textural features

Solid, uniform ThSiO_4 not showing any obvious variation in texture. Position of the phase is variable (bordering chevkinite or isolated)

Textural features

Fairly big ThSiO₄ replacing chevkinite. "Islands" of chevkinite display the same orientation 3 different ThSiO₄ phases are present. We can observe Progressive "swamping" of chevkinite

Nano-bubbles formation due to accumulation of helium

(Ewing et al., 2000, Seydoux-Guillaume et al., 2007)

Helium is a product of Th and U disintegration.

It is has been suggested (Seydoux-Guillaume et al., 2007) that ThSiO₄ is composed of an amorphous matrix with Hebubbles inclusions. Due to the very high amount of helium produced during α -decay of U and Th in ThSiO₄, and due to the amorphous state of this phase, helium is not incorporated in the ThSiO₄ phase but is segregated into bubbles, because of the presence of cracks and due to the amorphous structure of ThSiO₄, it is improbable that helium accumulates within the ThSiO₄ inclusion but diffuses out of this phase and out of the sample.

Crystallinity and orientation of ThSiO₄

Experiment CF 14 an example

Experimental electron backscatter diffraction (EBSD) patterns

- A chevkinite-(Ce)
- B thorite
- C huttonite
- D turkestanite

Textural features

Vein-like body (A) of amorphous ThSiO₄ partially replacing chevkinite. Blocky structure present in central area (B). In detail laminar structure of ThSiO₄ (C). Black streaks are narsarsukite and turkestanite

Microchemical characteristics

	huttonite						amorphi amorphi amorphi					
				thorite		c? c? c?		Thr?	Thr?	Thr?		
Sample	CF14-Th-5	CF14-Th-6	5 CF14-Th-8	CF14-Th- 25	CF14-Th- 26	CF14-Th- 34	CF15-Th- 12	CF15-Th- 13	CF15-Th- 19	CF15-Th- 14	CF15-Th- 16	CF15-Th- 17
P_2O_5	0,07	0,1	0,07	bdl	0,04	0,06	1,47	1,9	0,71	0,27	0,3	0,58
SiO ₂	18,43	18,55	18,88	18,42	18,38	17,5	17,77	17,83	18,16	18,56	18,54	18,3
ThO ₂	74,67	74,58	75,05	75,15	75,73	74,08	69,74	70,98	72,47	73,54	73,74	72,96
UO ₂	4,67	4,24	4,39	3,89	4,15	3,91	3,92	3,7	4,06	4,51	4,62	3,72
Sc_2O_3	0,03	0,04	0,04	0,03	0,04	0,04	0,03	0,04	0,04	0,04	0,04	0,04
Y_2O_3	bdl	0,19	0,11	0,15	0,13	0,19	0,09	0,11	bdl	0,17	bdl	bdl
La ₂ O ₃	bdl	0,22	bdl	bdl	bdl	bdl	0,93	0,96	0,42	bdl	bdl	0,35
Ce_2O_3	0,23	0,65	0,23	bdl	0,22	bdl	2,13	2,1	1,05	0,58	0,58	0,86
Pr ₂ O ₃	bdl	bdl	bdl	bdl	bdl	bdl	0,31	0,23	0,18	bdl	bdl	0,13
Nd ₂ O ₃	bdl	0,39	bdl	bdl	bdl	bdl	0,79	0,9	0,4	0,36	0,28	0,36
Sm ₂ O ₃	bdl	bdl	bdl	bdl	bdl	bdl	bdl	0,16	bdl	0,17	bdl	bdl
Gd ₂ O ₃	bdl	bdl	bdl	bdl	bdl	bdl	0,14	0,15	bdl	bdl	bdl	bdl
CaO	0,06	bdl	bdl	bdl	bdl	bdl	0,11	0,08	bdl	bdl	bdl	bdl
FeO	0,15	0,23	0,16	0,14	bdl	bdl	bdl	bdl	bdl	0,16	bdl	bdl
PbO	0,08	0,25	0,09	0,08	0,07	0,09	0,05	0,16	0,11	bdl	0,09	0,12
Na ₂ O	0,35	0,24	0,28	bdl	bdl	bdl	bdl	0,45	0,28	bdl	0,55	0,63
Total	98,84	99,96	99,3	97,86	98,76	95,92	97,57	99,8	97,93	98,52	98,82	98,13

Other relevant information

- Most of experiments did not produce ThSiO₄ phase. Th released from chevkinite-(Ce) is located in low concentration in other products (i.e. britholite contains up to 1,8 wt.% of ThO₂).
- Turkestanite (Ca,Na,□)₂ThSi₈O₂₀·nH₂O is another Th-bearing phase that appears in one experiment only (CF 15)
- Chevkinite-(Ce) shows distinct depletion in Th contents on the rim where the alteration takes place
- We do not see fluorine present in any ThSiO₄ analysis, perhaps suggesting that the Th was transported as a hydroxide

Preliminary conclusions

Alteration of chevkinite-(Ce) results in $\rm ThSiO_4$ production at temperatures range 550-600°C and at pressure of 200 MPa

3 types of ThSiO4 have grown -thorite -huttonite -amorphous ThSiO4

Longer time of experiment has supported production of

Experimental Thorite=>Huttonite phase transition reported in literature (Mazeina et al., 2005) is much higher (above 800°C) than observed in our experiments (550°C)

Experiments are contributing to our knowledge of Th solubility, transport mechanisms, and controls of structure (appearance of thorite, huttonite or amorphous phase)

MUCH REMAINS TO BE DONE

Thank you for your attention

Presented studies were supported by Harmonia project 2017/26/M/ST10/00407 from the National Science Centre

